квадратурная погрешность

квадратурная погрешность
Quadraturfehler матем.

Russisch-deutsch wörterbuch polytechnischen. 2013.

Игры ⚽ Поможем написать курсовую

Schlagen Sie auch in anderen Wörterbüchern nach:

  • КВАДРАТУРНАЯ ФОРМУЛА — приближенная формула для вычисления определенного интеграла: в левой части стоит интеграл, подлежащий вычислению. Подинтегральная функция записана в виде произведения двух функций. Первая из них р(х)считается фиксированной для данной К. ф. и наз …   Математическая энциклопедия

  • Квадратурная формула — Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура)  вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… …   Википедия

  • НАИЛУЧШАЯ КВАДРАТУРНАЯ ФОРМУЛА — оптимальная квадратурная формула, формула приближенного интегрирования, обеспечивающая на заданном классе функций минимальную погрешность среди всех формул определенного типа. Пусть рассматривается квадратурная формула где весовая функция.… …   Математическая энциклопедия

  • Приближённое интегрирование —         определённых интегралов, раздел вычислительной математики, занимающийся разработкой и применением методов приближённого вычисления определённых Интегралов.          Пусть y = f (x) непрерывная функция на отрезке [a, b] и интеграл          …   Большая советская энциклопедия

  • ПРЯМОУГОЛЬНИКОВ ФОРМУЛА — формула вычисления интеграла по конечному промежутку [а, b]: (*) где h=(b а)/N и . Алгебраич. степень точности равна 1 при a=a+h/2 и равна 0 в остальных случаях. Квадратурная формула (*) точна для тригонометрич. функций В случае b а=2p… …   Математическая энциклопедия

  • КУБАТУРНАЯ ФОРМУЛА — формула для приближенного вычисления кратных интегралов вида Интегрирование выполняется по множеству в евклидовом пространстве К. ф. наз. приближенное равенство Подинтегральная функция записана в виде произведения двух функций: первая… …   Математическая энциклопедия

  • СИМПСОНА ФОРМУЛА — частный случай Ньютона Котеса квадратурной формулы, в к рой берутся три узла: Пусть промежуток [а, b]разбит на пчастичных промежутков [xi, xi+1], i=0, 1, 2, ..., n 1, длины h=(b а)/п, при этом n считается четным числом, и для вычисления интеграла …   Математическая энциклопедия

  • ТРАПЕЦИЙ ФОРМУЛА — частный случай Ньютона Котеса квадратурной формулы, в к рой берется два узла: Если подинтегральная функция f(х)сильно отличается от линейной, то формула (1) дает малую точность. Промежуток [ а, b]разбивается на пчастичных промежутков [ х i, xi+1] …   Математическая энциклопедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”